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Efficient representations of signals require that
coefficients of functions that represent the regions
of interest are sparse. This also means that we can
reconstruct the original function with a smaller
set of basis functions with better accuracy.

Wavelets have had great success in signal pro-
cessing because of their good approximation
properties [1] and ability to pick up disconti-
nuities efficiently in one dimensional piecewise
smooth functions, the discontinuities here are
zero-dimensional or point discontinuities. In two
dimensional functions, however, discontinuities
are one-dimensional, like discontinuities occur-
ring over edges or curves. Intuitively, wavelets
in 2-D obtained by a tensor product of one-
dimensional wavelets will be good at isolating the
discontinuity at an edge point, but will not see the
smoothness along a contour. For example in Fig-
ure 1 the wavelet transform of the vertical edge
is represented by coefficients in only one direc-
tional orientation, whereas the diagonal edge is
represented by significant coefficients in all the
directional orientations.

Numerous methods have been proposed inde-
pendently to overcome the problem. A major
part of the work done this summer was to study
and comprehend the rapidly growing literature
on directional multiresolutional image analysis
and classify the different methods based on some
common approach they use. The other part of
the work was to study the different properties of
these methods and choose appropriate transforms
for either image compression or denoising.

Classification of Techniques

We have classified the different directional
multiresolutional image analysis techniques as
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Figure 1: (a) avertical edge image, (c) a diagonal
edge image, (b) and (d) are their wavelet trans-
forms respectively.

(1) Adaptive, (2) Radon-based (3) Filter bank
based.

Adaptive Techniques

Adaptive techniques are techniques where the
directional component of an image is adaptively
estimated and the transform is steered based on
the estimate. For example the bandlet trans-
form of Pennec and Mallat [2] links the signif-
icant wavelet coefficients along a discontinuity
and represents it as a smooth 1-D curve.

Radon-based Techniques

We can classify the curvelet and ridgelet trans-
forms as Radon based transforms because both
these transforms use the Radon transform for di-
rectionality. The ridgelet transform was devel-
oped by Candes and Donoho [3] to overcome
the disadvantage of the 2-D wavelet transform.
The ridgelet transform uses the radon transform
to map a line singularity to a point singularity and
uses the wavelet transform to deal with the point
singularity effectively. The continuous ridgelet
transform (CRT) in R? space is defined as

CRT(a,b,0) = /R Wapo(X)f(X)dx (1)
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where the ridgelets are wavelets along a direc-
tional component as

Vano(X) = a ?y((x;cos(8) +x,5in(0) — b) /a)
2

Ridgelet transforms are very effective in repre-

senting objects with singularities along lines.

For practical applications, however, we require
discrete implementations of the ridgelet trans-
form that leads to algorithmic implementations.
This is a challenging problem. Since the radon
transform is polar in nature, we cannot imple-
ment direct discretizations of continuous formu-
lae. The discretization implemented in this work
was developed by Do [4].

The curvelet transform was developed by Can-
des and Donoho [5]. It was shown to achieve op-
timal approximation behavior in a certain sense
for 2-D piecewise smooth functions in R? where
the discontinuity is along a curve in the C? space.
The attractive part of the curvelet transform is that
it has good non-linear convergence properties.

The curvelet transform of an image is obtained
by the following steps: (1) Subband decomposi-
tion of the image into a sequence of subbands by
using a pyramidal tree structured filter-bank. (2)
Windowing each subband into blocks of appro-
priate size, depending on the center frequency of
the subband. (3) Applying the discrete ridgelet
transform on these blocks. The idea behind win-
dowing the subbands is that windowed parts of
smooth lines look straight, and these straight parts
can be analyzed by a ridgelet transfrom.

Filter Bank Techniques

The discrete algorithmic implementation of the
curvelet transform poses many problems. Since
it uses windowing of the subband coefficients it
may lead to blocking effects, and if we use over-
lapping windows the redundancy of the transform
increases. The other problem with the curvelet
transform is that it uses the ridgelet transfrom and
as mentioned before the ridgelet transform cannot
be efficiently implemented for discrete images.

To overcome this problem Do and Vetterli
proposed the pyramidal directional filterbank
(PDFB) also known as the contourlet transform

[6]. This approach overcomes the block based ap-
proach of the curvelet by using a directional filter
bank [7]. The contourlet transform first applies a
multiscale decomposition on the image and then
the local radon decomposition is obtained by a di-
rectional filter bank.

Results
We performed denoising by hard threshold-

ing of the transform coefficients. The contourlet
trasform performed better than the wavelet trans-
form. For the standard images Lena, Barbara and
Mandrill we obtained a perfromance gain of 2.1
dB, 0.7 dB and 1.8 dB respectively.

In the future we would like to be able to un-
derstand and present the different directional and
multiresolutional transforms in a way such that
their differences and similarities are made ex-
plicit. This would be useful for selecting trans-
forms for specific image processing tasks.

Currently we are working on using the con-
tourlet and curvelet transforms for image denois-
ing. We hope to obtain better results by using the
directional properties of these transforms. We are
also working on using these transforms for com-
pression instead of the 2-D wavelet transforms.
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